Reconstruction of field excitatory post-synaptic potentials in the dentate gyrus from amperometric biosensor signals.
نویسندگان
چکیده
A new feasible and reproducible method to reconstruct local field potentials from amperometric biosensor signals is presented. It is based on the least-square fit of the current response of the biosensor electrode to a voltage step by the use of two time constants. After determination of the electrode impedance, Fast Fourier Transform (FFT) and Inverse FFT are performed to convert the recorded amperometric signals into voltage and trace the local field potentials using a resistor-capacitor circuit-based model. We applied this method to reconstruct field evoked potentials from currents recorded by a lactate biosensor in the rat dentate gyrus after stimulation of the perforant pathway in vivo. Initial slope of the reconstructed field excitatory postsynaptic potentials was used in order to demonstrate long term potentiation induced by high frequency stimulation of the perforant path. Our results show that reconstructing evoked potentials from amperometric recordings is a reliable method to obtain in vivo electrophysiological and amperometric information simultaneously from the same electrode in order to understand how chemical compounds vary with and modulate the dynamics of brain activity.
منابع مشابه
Effect of low frequency stimulation of perforant path on kindling acquisition and synaptic transmission in the dentate gyrus in rats
Introduction: Previous studies have been shown that low frequency stimulation (LFS) has an inhibitory effect on kindling acquisition. However, the mechanism of this effect has not been completely determined. In the present study, the effect of LFS of the perforant path on seizures induced by rapid perforant path kindling was investigated. Methods: Animals were kindled by electrical stimulatio...
متن کاملEffect of forced treadmill exercise on long-term potentiation (LTP) in the dentate gyrus of hippocampus in male rats
Introduction: Previous studies indicate that exercise influences cognitive function. Nevertheless, considering that exercise in animal study can be voluntary, or forced, effects of exercise (specially forced exercise) on learning and memory abides as a matter of controversy. The present study aimed to investigate the effects of treadmill exercise on LTP in the dentate gyrus of rats. Methods: T...
متن کاملRepeated administration of cannabinoid receptor agonist and antagonist impairs short and long term plasticity of rat’s dentate gyrus in vivo
Introduction: The effects of cannabinoids (CBs) on synaptic plasticity of hippocampal dentate gyrus neurons have been shown in numerous studies. However, the effect of repeated exposure to cannabinoids on hippocampal function is not fully understood. In this study, using field potential recording, we investigated the effect of repeated administration of the nonselective CB receptor agonist WIN5...
متن کاملEffect of Clenbuterol Administration into the Basolateral Amygdala on Synaptic Plasticity in Dentate Gyrus Granule Cells in Male Rats
Background and purpose: Neural circuits and neurotransmitter systems within the basolateral amygdala (BLA) play roles in forming emotional memory through communication with the hippocampus. Therefore, in this study, the role of these neural circuits on synaptic plasticity was investigated by agonist injection of beta-adrenergic receptors into the BLA. Materials and methods: In this experiment...
متن کاملThe state dependency effect of morphine on memory by behavioral and electrophysiological methods in freely moving rats
Endogenous opioid system agonists exert amnestic effects in different models of memory. It has been suggested that these amnestic effects may be linked indirectly to state-dependent learning. Accordingly pre-training administration of morphine can impair the retrieval of learned tasks in a state dependent manner, which is reversible by pre test morphine administration. In this study, state depe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neuroscience methods
دوره 206 1 شماره
صفحات -
تاریخ انتشار 2012